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NOMENCLATURE 

thermal diffusivity [m2js] : 
object surface area [m’] : 
Biot number = xD,I; 
polymer heat capacity [J/kg’ C] : 
obJect constant, pC,V,A [Jim” C] ; 
coating thickness [m] ; 
heat of fusion [J/kg] ; 
any property of polymer particles; 

time [s] ; 
temperature [“Cl ; 
co-ordinate ; 
object volume [m3] : 
heat-transfer coefficient [W;m’“C] ; 
dummy variable ; 
dimensionless temperature, = (T, - 7J/( T,, - T,,) ; 
thermal conductivity of polymer [Wjm ‘C] : 
density [kg,mj]. 

bed : 
melting: 

start values ; 
object: 

maximum : 
average : 
transformed co-ordinates. 

INTRODUCTION 

THE PROBLEM of heat transfer with moving boundary is also 
encountered in tluidized bed dip coating process. The 

process consists of fluidizing the polymer powder and then 

dipping the heated object into the bed. Upon withdrawal ot 

the obJect. after a desired residence time in the bed, a 

molten plastic layer is observed to have formed on the 

object surface which later congeals into a more or less 
continuous protective film. 

* Formerly, the author was a staff member at the Applied 

Physics Department of Delft University, The Netherlands. 

In the present study a general theory of fluidized bed 

coating has been developed and compared with other 

studies reported in the literature. 

THE SOLUTION OF THE PROBLEM 

Two books [l, 21 and several papers [3, 41 which have 

recently appeared independently on the theory of fluidized 

bed coating deserve close attention. In one of the papers [4] 

an attempt has been made to solve the heat transfer with 

moving boundary problem which is encountered in fluid&d 

bed coating processes. Some of the restrictions, i.e. the 

constant object temperature, the constant polymer proper- 

ties, imposed in solving the problem in our view are not 

necessary. For the solution of the problem has already been 

given in an internal report as early as at the beginning of 1968 

[2]. Below we give the highlights of this theoretical work. 

The set of equations describing the process are: 

u < Y < D(t), (1) 

Y = 0: TW, t) = 7;.(t); T(O.0) = 7;,, (2) 

y = D(t): j.; = z(T, - Tb) + (pC,(T, - T,) 

T[D(t), tl = T,, (41 

T(x. U) = Th. (5) 

D(0) = 0, 

where D(t) is the time dependent coating thickness. T,, T,,, 
7;., T, are the bed, the initial, object, the instantaneous 

object and the melting temperatures of the polymer 

respectively. In general any polymer property can be 
averaged as [2] : 

T2 

(p’) = 1 
T, - T s p’(T’)dT’. (6) 
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The solution of the above set of equations can be accom- 

plished by making the following transformations: 

\.* = Y,D(r): t* = Uf, 7‘” = T 7;,, 

Under these transformations the above equations become 

\.* = (I: T*(1), t*) = r; : T*(o, 0) = TF”,. (81 

iiT* 
y* = ]:_._-I 

3.x* 1 _ = 
- (I - Tz) 

,x*-i i 
(1 - T$)Ei + 5 

[ 

where Bi ( = ctD!lJ is known as Biot number. 
Integration of the new equation (7) from Y* = I to .x* 

gives 

where . 

A second integration and the r~rran~ement of the last 

equation and after the insertion of the boundary condition 

at I* = 0 produces 

= 7.: - 1 - (1 - TR)Bi. (14) 

The last equation can be integrated with respect to time 

Equation (IS) gives D. the coating thickness, in terms of 

the temperature profile in the coating and the boundary 

conditions at the object surface. Since it involves integrals 

it has the usual advantage of integral formulation in that it 
is relatively insensitive to smail variations in the kernel 

function in the integrals. 
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Instead of assuming a second degree polynomial or a 

higher one for the temperature profile in the coating layer 

as has been done in [4] tie shall find the upper and the 

lower bounds on the integral of equation (15). Such a 

procedure has the advantage that the tinal solution for D(t) 
is not very sensitive to the form of the temperature prolile 

in the coating layer. 

For moderate coating conditions such that 

/ \c plr,, / 

and since that for the bounds I < T* < Tf. [?I, then 

equation (15) reduces to 

where T: is given by a simple heat balance taken at the 

coating-object interface [2] : 

(rZ - f),(T:, - 1) =expI-(ZI..C,)(f*,xcr’):j. 

with C,. being the object constant. 

Equation {16) is the most general solution giving the 

coating. Unlike en=atinn 

with 

and 

given in [4], the above equation is structurally simple and 

the values of D can be easily calculated as function of 

known parameters. However the las& equation can also be 

further simplism by considering short coating times i.e. 

when T: --) T$,. In which case equation (16) reduces to 

0’ T,g, - 2T; + Z(AH;C,T,) + 1 
‘=z. TFo - I - (I - T;f) (Bi) ’ 

(17) 

where (Bi) is the average value of between f = 0 and 1. 

Some useful relationships may be derived from equation 

{ 17). Letting t + rx we obtain 
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and non-linear. thus preventing one obtaining an analytical 
i. 1-H 

(D,) = ;.7!. (19) 
solution. However. by integrating the set of equations 

,n describing the process it has been possible to find the upper 

where 0, is the dimensionless temperature. 
and the lower bounds of the coating thickness as function of 

In case of some polymers where AH,C,T, < 1 and in 
time. 

dense iluidized beds where 2:;. --t 0 equation ( 17) reduces to 
The theoretical results have been compared with their 

literature counterparts and they are found to be more 

general and more suitable for numerical calculations than 

the results reported in [4]. 

or&-==2(1 - 19,). 
Jar 

for Qm < U.5. (20) 

which again is more simple than the following equation l, 

given in [4] ; 

D 

i 

12[20 + 1 - J(2B + l)] + 
-z 
Jar 20 + 5 + JJ20 + 1) i 2. 

The extensive experimental results given elsewhere [ 1,2,5] 

verify all of the above theoretical predictions better than 

with 10 per cent accuracy. 
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NOMENCLATURE 

L’, sphere diameter [cm] ; 
.L integral scale of turbulence [cm] : 
n, frequency of eddy shedding [Hz] : 
ZJ. free-stream velocity [cm,s]. 

Greek symbol 

v, kinematic viscosity [cm’,s]. 
_ 

* Now with Research Division. Carrier Corporation. 

Syracuse, N.Y. 

Dimensionless numbers 

Re, Reynolds number, DU,v; 
St. Strouhal number, nD, U. 

THE PRESENT note deals with the recent paper by Raithby 

and Eckert [l] in which they have reported the effect of 
turbulence intensity, the scale of turbulence, and the position 

of the support on macroscopic heat transfer from spheres 

to an air stream in the Reynolds number range 3.6 x lo’- 

5.2 x 1U4. the Reynolds number being based on the sphere 

diameter, D, and the free-stream velocity, U. 


